Properties

Label 256.29598.2.c1
Order $ 2^{7} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^7$
Order: \(128\)\(\medspace = 2^{7} \)
Index: \(2\)
Exponent: \(2\)
Generators: $\left(\begin{array}{rr} 1 & 12 \\ 18 & 19 \end{array}\right), \left(\begin{array}{rr} 5 & 0 \\ 6 & 23 \end{array}\right), \left(\begin{array}{rr} 17 & 12 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 19 & 12 \\ 0 & 19 \end{array}\right), \left(\begin{array}{rr} 7 & 0 \\ 18 & 17 \end{array}\right), \left(\begin{array}{rr} 19 & 0 \\ 0 & 19 \end{array}\right), \left(\begin{array}{rr} 7 & 12 \\ 0 & 7 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $C_2^5:D_4$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{15}.C_2^4.\PSL(2,7)$
$\operatorname{Aut}(H)$ $\GL(7,2)$, of order \(163849992929280\)\(\medspace = 2^{21} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31 \cdot 127 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^9.C_2^6:\GL(3,2)$, of order \(5505024\)\(\medspace = 2^{18} \cdot 3 \cdot 7 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^7$
Normalizer:$C_2^5:D_4$
Complements:$C_2$
Minimal over-subgroups:$C_2^5:D_4$
Maximal under-subgroups:$C_2^6$$C_2^6$$C_2^6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$-1$
Projective image$C_2^4$