Properties

Label 256.26480.1.a1
Order $ 2^{8} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_4\times C_{16}):C_2^2$
Order: \(256\)\(\medspace = 2^{8} \)
Index: $1$
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $a, b, c, d$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the radical, a direct factor, nonabelian, a $2$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $(C_4\times C_{16}):C_2^2$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $0$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_2^4.C_2^2$
$\operatorname{Aut}(H)$ $C_2^6.C_2^4.C_2^2$
$W$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_8$
Normalizer:$(C_4\times C_{16}):C_2^2$
Complements:$C_1$
Maximal under-subgroups:$C_4^2.C_2^3$$C_2^2:\OD_{32}$$(C_2^2\times C_{16}):C_2$$C_8.\OD_{16}$$C_{16}:D_4$$C_{16}:D_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_2^4$