Properties

Label 254016.a.6048.a1
Order $ 2 \cdot 3 \cdot 7 $
Index $ 2^{5} \cdot 3^{3} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_7$
Order: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Index: \(6048\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 7 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\langle(1,9)(2,6)(4,7)(5,8)(10,15,12,18,14,13,16), (1,3,9)(2,8,4)(5,6,7)(10,16,13,14,18,12,15), (10,14,15,13,12,16,18)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $\SL(2,8)^2$
Order: \(254016\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 7^{2} \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian, an A-group, and perfect (hence nonsolvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$${}^2G(2,3)\wr C_2$, of order \(4572288\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $C_6\times S_3$, of order \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_7$
Normalizer:$S_3\times D_7$
Normal closure:$\SL(2,8)^2$
Core:$C_1$
Minimal over-subgroups:$S_3\times F_8$$C_7\times D_9$$S_3\times D_7$
Maximal under-subgroups:$C_{21}$$C_{14}$$S_3$

Other information

Number of subgroups in this autjugacy class$6048$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$\SL(2,8)^2$