Properties

Label 254016.a.18144.a1
Order $ 2 \cdot 7 $
Index $ 2^{5} \cdot 3^{4} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{14}$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Index: \(18144\)\(\medspace = 2^{5} \cdot 3^{4} \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\langle(2,3)(4,6)(5,8)(7,9), (10,12,15,11,17,16,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $\SL(2,8)^2$
Order: \(254016\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 7^{2} \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian, an A-group, and perfect (hence nonsolvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$${}^2G(2,3)\wr C_2$, of order \(4572288\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^2\times C_{14}$
Normalizer:$C_2^2\times D_{14}$
Normal closure:$\SL(2,8)^2$
Core:$C_1$
Minimal over-subgroups:$C_2\times F_8$$C_7\times D_7$$S_3\times C_7$$D_{14}$$C_2\times C_{14}$$D_{14}$
Maximal under-subgroups:$C_7$$C_2$

Other information

Number of subgroups in this autjugacy class$4536$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$16$
Projective image$\SL(2,8)^2$