Properties

Label 254016.a.4536.e1
Order $ 2^{3} \cdot 7 $
Index $ 2^{3} \cdot 3^{4} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_{14}$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: \(4536\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\langle(2,3)(4,6)(5,8)(7,9), (2,5)(3,8)(4,7)(6,9)(10,16)(11,17)(12,14)(13,15), (2,8)(3,5)(4,9)(6,7), (2,3)(4,6)(5,8)(7,9)(10,18,16,12,13,15,14)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $\SL(2,8)^2$
Order: \(254016\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 7^{2} \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian, an A-group, and perfect (hence nonsolvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$${}^2G(2,3)\wr C_2$, of order \(4572288\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $S_4\times F_7$, of order \(1008\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 7 \)
$W$$D_7$, of order \(14\)\(\medspace = 2 \cdot 7 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^2\times D_{14}$
Normal closure:$\SL(2,8)^2$
Core:$C_1$
Minimal over-subgroups:$C_2^2\times \SL(2,8)$$C_2^2\times D_{14}$
Maximal under-subgroups:$D_{14}$$C_2\times C_{14}$$D_{14}$$C_2^3$

Other information

Number of subgroups in this autjugacy class$4536$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$\SL(2,8)^2$