Properties

Label 254016.a.126.a1
Order $ 2^{5} \cdot 3^{2} \cdot 7 $
Index $ 2 \cdot 3^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times \SL(2,8)$
Order: \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
Index: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Generators: $\langle(10,14)(11,13)(12,18)(15,16), (1,5,9)(2,7,4)(3,8,6)(10,11)(12,16)(13,14)(15,18), (10,11)(12,16)(13,14)(15,18), (1,3,7)(2,6,4)(5,9,8)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $\SL(2,8)^2$
Order: \(254016\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 7^{2} \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian, an A-group, and perfect (hence nonsolvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$${}^2G(2,3)\wr C_2$, of order \(4572288\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $S_3\times {}^2G(2,3)$, of order \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)
$W$$\SL(2,8)$, of order \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^3\times \SL(2,8)$
Normal closure:$\SL(2,8)^2$
Core:$\SL(2,8)$
Minimal over-subgroups:$C_2^3\times \SL(2,8)$
Maximal under-subgroups:$C_2\times \SL(2,8)$$C_2^2\times F_8$$C_2\times D_{18}$$C_2\times D_{14}$

Other information

Number of subgroups in this autjugacy class$126$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$\SL(2,8)^2$