Properties

Label 254016.a.3969.a1
Order $ 2^{6} $
Index $ 3^{4} \cdot 7^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(3969\)\(\medspace = 3^{4} \cdot 7^{2} \)
Exponent: \(2\)
Generators: $\langle(2,5)(3,8)(4,7)(6,9)(10,17)(11,15)(12,13)(16,18), (2,3)(4,6)(5,8)(7,9), (2,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $2$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $\SL(2,8)^2$
Order: \(254016\)\(\medspace = 2^{6} \cdot 3^{4} \cdot 7^{2} \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian, an A-group, and perfect (hence nonsolvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$${}^2G(2,3)\wr C_2$, of order \(4572288\)\(\medspace = 2^{7} \cdot 3^{6} \cdot 7^{2} \)
$\operatorname{Aut}(H)$ $\GL(6,2)$, of order \(20158709760\)\(\medspace = 2^{15} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 31 \)
$W$$C_7^2$, of order \(49\)\(\medspace = 7^{2} \)

Related subgroups

Centralizer:$C_2^6$
Normalizer:$C_2^6.C_7^2$
Normal closure:$\SL(2,8)^2$
Core:$C_1$
Minimal over-subgroups:$C_2^3\times F_8$$C_2^3:F_8$$C_2^3:F_8$
Maximal under-subgroups:$C_2^5$$C_2^5$

Other information

Number of subgroups in this autjugacy class$81$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$\SL(2,8)^2$