Properties

Label 24704.21819.8.b1.a1
Order $ 2^{4} \cdot 193 $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{193}:C_{16}$
Order: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(3088\)\(\medspace = 2^{4} \cdot 193 \)
Generators: $a^{32}b^{288}, b^{2}, a^{16}b^{60}, a^{8}b^{6}, a^{4}b^{383}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_{386}:C_{64}$
Order: \(24704\)\(\medspace = 2^{7} \cdot 193 \)
Exponent: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times F_{193}$, of order \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)
$\operatorname{Aut}(H)$ $F_{193}$, of order \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
$W$$C_{193}:C_{64}$, of order \(12352\)\(\medspace = 2^{6} \cdot 193 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{386}:C_{64}$
Minimal over-subgroups:$C_{386}:C_{16}$
Maximal under-subgroups:$C_{193}:C_8$$C_{16}$

Other information

Möbius function$0$
Projective image$C_{386}:C_{64}$