Properties

Label 24704.21819.64.a1.a1
Order $ 2 \cdot 193 $
Index $ 2^{6} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{386}$
Order: \(386\)\(\medspace = 2 \cdot 193 \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(386\)\(\medspace = 2 \cdot 193 \)
Generators: $b^{193}, b^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, a semidirect factor, and cyclic (hence abelian, elementary ($p = 2,193$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{386}:C_{64}$
Order: \(24704\)\(\medspace = 2^{7} \cdot 193 \)
Exponent: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_{64}$
Order: \(64\)\(\medspace = 2^{6} \)
Exponent: \(64\)\(\medspace = 2^{6} \)
Automorphism Group: $C_2\times C_{16}$, of order \(32\)\(\medspace = 2^{5} \)
Outer Automorphisms: $C_2\times C_{16}$, of order \(32\)\(\medspace = 2^{5} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times F_{193}$, of order \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)
$\operatorname{Aut}(H)$ $C_{192}$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$C_{64}$, of order \(64\)\(\medspace = 2^{6} \)

Related subgroups

Centralizer:$C_{386}$
Normalizer:$C_{386}:C_{64}$
Complements:$C_{64}$ $C_{64}$
Minimal over-subgroups:$D_{386}$
Maximal under-subgroups:$C_{193}$$C_2$

Other information

Möbius function$0$
Projective image$C_{193}:C_{64}$