Properties

Label 24576.bei.6144.C
Order $ 2^{2} $
Index $ 2^{11} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(2\)
Generators: $d^{2}f^{2}g, gjk$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_2^6.C_2\wr S_3$
Order: \(24576\)\(\medspace = 2^{13} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_4^2.C_2^4:S_4$
Order: \(6144\)\(\medspace = 2^{11} \cdot 3 \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Automorphism Group: $C_2^2\times C_4^2.C_2^4.C_6.C_2^4$
Outer Automorphisms: $C_2^2\times D_4$, of order \(32\)\(\medspace = 2^{5} \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{1158}:C_{16}$, of order \(786432\)\(\medspace = 2^{18} \cdot 3 \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2^6.C_2^4.C_6.C_2$
Normalizer:$C_2^6.C_2\wr S_3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed