Properties

Label 24576.bei
Order \( 2^{13} \cdot 3 \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 2^{2} \)
$\card{\Aut(G)}$ \( 2^{18} \cdot 3 \)
$\card{\mathrm{Out}(G)}$ \( 2^{7} \)
Perm deg. not computed
Trans deg. not computed
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 96 | (1,73)(3,27)(4,28)(6,30)(7,31)(9,33)(10,34)(12,36)(13,37)(15,39)(16,40)(18,42)(19,43)(21,45)(22,46)(24,48)(25,49)(51,75)(52,76)(54,78)(55,79)(57,81)(58,82)(60,84)(61,85)(63,87)(64,88)(66,90)(67,91)(69,93)(70,94)(72,96), (1,73)(2,26)(4,28)(5,29)(7,31)(8,32)(10,34)(11,35)(13,37)(14,38)(16,40)(17,41)(19,43)(20,44)(22,46)(23,47)(25,49)(50,74)(52,76)(53,77)(55,79)(56,80)(58,82)(59,83)(61,85)(62,86)(64,88)(65,89)(67,91)(68,92)(70,94)(71,95), (1,85,49,37)(2,14,50,62)(4,16,52,64)(5,17,53,65)(7,19,55,67)(8,68,56,20)(9,57)(10,70,58,22)(11,71,59,23)(12,60)(13,73,61,25)(21,69)(24,72)(26,38,74,86)(28,40,76,88)(29,41,77,89)(31,43,79,91)(32,92,80,44)(33,81)(34,94,82,46)(35,95,83,47)(36,84)(45,93)(48,96), (1,95,85,83,49,47,37,35)(2,4,14,16,50,52,62,64)(5,7,17,19,53,55,65,67)(8,22,68,10,56,70,20,58)(9,21,57,69)(11,25,71,13,59,73,23,61)(12,24,60,72)(26,76,38,88,74,28,86,40)(27,75)(29,79,41,91,77,31,89,43)(30,78)(32,94,92,82,80,46,44,34)(33,93,81,45)(36,96,84,48)(39,87)(42,90), (1,73)(5,29)(6,30)(7,31)(11,35)(12,36)(13,37)(17,41)(18,42)(19,43)(23,47)(24,48)(25,49)(53,77)(54,78)(55,79)(59,83)(60,84)(61,85)(65,89)(66,90)(67,91)(71,95)(72,96), (1,49)(5,53)(6,54)(7,55)(11,59)(12,60)(13,61)(17,65)(18,66)(19,67)(23,71)(24,72)(25,73)(29,77)(30,78)(31,79)(35,83)(36,84)(37,85)(41,89)(42,90)(43,91)(47,95)(48,96), (1,91)(2,8)(4,10)(5,11)(7,13)(9,33)(12,36)(14,20)(16,22)(17,23)(19,25)(21,45)(24,48)(26,32)(28,34)(29,35)(31,37)(38,44)(40,46)(41,47)(43,49)(50,56)(52,58)(53,59)(55,61)(57,81)(60,84)(62,68)(64,70)(65,71)(67,73)(69,93)(72,96)(74,80)(76,82)(77,83)(79,85)(86,92)(88,94)(89,95), (1,91,73,67)(3,9,27,33)(4,10,28,34)(6,12,30,36)(7,13,31,37)(14,38)(15,45,39,21)(16,46,40,22)(17,41)(18,48,42,24)(19,49,43,25)(20,44)(23,47)(51,57,75,81)(52,58,76,82)(54,60,78,84)(55,61,79,85)(62,86)(63,93,87,69)(64,94,88,70)(65,89)(66,96,90,72)(68,92)(71,95), (1,49)(2,50)(4,52)(5,53)(7,55)(8,56)(10,58)(11,59)(13,61)(14,62)(16,64)(17,65)(19,67)(20,68)(22,70)(23,71)(25,73)(26,74)(28,76)(29,77)(31,79)(32,80)(34,82)(35,83)(37,85)(38,86)(40,88)(41,89)(43,91)(44,92)(46,94)(47,95), (1,85)(3,15)(4,16)(6,18)(7,19)(9,21)(10,22)(12,24)(13,25)(14,62)(17,65)(20,68)(23,71)(27,39)(28,40)(30,42)(31,43)(33,45)(34,46)(36,48)(37,49)(38,86)(41,89)(44,92)(47,95)(51,63)(52,64)(54,66)(55,67)(57,69)(58,70)(60,72)(61,73)(75,87)(76,88)(78,90)(79,91)(81,93)(82,94)(84,96), (1,49)(3,51)(4,52)(6,54)(7,55)(9,57)(10,58)(12,60)(13,61)(15,63)(16,64)(18,66)(19,67)(21,69)(22,70)(24,72)(25,73)(27,75)(28,76)(30,78)(31,79)(33,81)(34,82)(36,84)(37,85)(39,87)(40,88)(42,90)(43,91)(45,93)(46,94)(48,96), (1,92,84,43,8,18,25,68,36,67,32,66)(2,6,7,14,24,61,26,54,79,38,72,37)(3,4,17,21,58,29,51,76,41,69,34,5)(9,16,59,87,46,23,57,88,83,39,70,47)(10,53,75,28,65,93,82,77,27,52,89,45)(11,15,22,71,33,64,35,63,94,95,81,40)(12,19,56,90,49,20,60,91,80,42,73,44)(13,50,78,31,62,96,85,74,30,55,86,48) >;
 
Copy content gap:G := Group( (1,73)(3,27)(4,28)(6,30)(7,31)(9,33)(10,34)(12,36)(13,37)(15,39)(16,40)(18,42)(19,43)(21,45)(22,46)(24,48)(25,49)(51,75)(52,76)(54,78)(55,79)(57,81)(58,82)(60,84)(61,85)(63,87)(64,88)(66,90)(67,91)(69,93)(70,94)(72,96), (1,73)(2,26)(4,28)(5,29)(7,31)(8,32)(10,34)(11,35)(13,37)(14,38)(16,40)(17,41)(19,43)(20,44)(22,46)(23,47)(25,49)(50,74)(52,76)(53,77)(55,79)(56,80)(58,82)(59,83)(61,85)(62,86)(64,88)(65,89)(67,91)(68,92)(70,94)(71,95), (1,85,49,37)(2,14,50,62)(4,16,52,64)(5,17,53,65)(7,19,55,67)(8,68,56,20)(9,57)(10,70,58,22)(11,71,59,23)(12,60)(13,73,61,25)(21,69)(24,72)(26,38,74,86)(28,40,76,88)(29,41,77,89)(31,43,79,91)(32,92,80,44)(33,81)(34,94,82,46)(35,95,83,47)(36,84)(45,93)(48,96), (1,95,85,83,49,47,37,35)(2,4,14,16,50,52,62,64)(5,7,17,19,53,55,65,67)(8,22,68,10,56,70,20,58)(9,21,57,69)(11,25,71,13,59,73,23,61)(12,24,60,72)(26,76,38,88,74,28,86,40)(27,75)(29,79,41,91,77,31,89,43)(30,78)(32,94,92,82,80,46,44,34)(33,93,81,45)(36,96,84,48)(39,87)(42,90), (1,73)(5,29)(6,30)(7,31)(11,35)(12,36)(13,37)(17,41)(18,42)(19,43)(23,47)(24,48)(25,49)(53,77)(54,78)(55,79)(59,83)(60,84)(61,85)(65,89)(66,90)(67,91)(71,95)(72,96), (1,49)(5,53)(6,54)(7,55)(11,59)(12,60)(13,61)(17,65)(18,66)(19,67)(23,71)(24,72)(25,73)(29,77)(30,78)(31,79)(35,83)(36,84)(37,85)(41,89)(42,90)(43,91)(47,95)(48,96), (1,91)(2,8)(4,10)(5,11)(7,13)(9,33)(12,36)(14,20)(16,22)(17,23)(19,25)(21,45)(24,48)(26,32)(28,34)(29,35)(31,37)(38,44)(40,46)(41,47)(43,49)(50,56)(52,58)(53,59)(55,61)(57,81)(60,84)(62,68)(64,70)(65,71)(67,73)(69,93)(72,96)(74,80)(76,82)(77,83)(79,85)(86,92)(88,94)(89,95), (1,91,73,67)(3,9,27,33)(4,10,28,34)(6,12,30,36)(7,13,31,37)(14,38)(15,45,39,21)(16,46,40,22)(17,41)(18,48,42,24)(19,49,43,25)(20,44)(23,47)(51,57,75,81)(52,58,76,82)(54,60,78,84)(55,61,79,85)(62,86)(63,93,87,69)(64,94,88,70)(65,89)(66,96,90,72)(68,92)(71,95), (1,49)(2,50)(4,52)(5,53)(7,55)(8,56)(10,58)(11,59)(13,61)(14,62)(16,64)(17,65)(19,67)(20,68)(22,70)(23,71)(25,73)(26,74)(28,76)(29,77)(31,79)(32,80)(34,82)(35,83)(37,85)(38,86)(40,88)(41,89)(43,91)(44,92)(46,94)(47,95), (1,85)(3,15)(4,16)(6,18)(7,19)(9,21)(10,22)(12,24)(13,25)(14,62)(17,65)(20,68)(23,71)(27,39)(28,40)(30,42)(31,43)(33,45)(34,46)(36,48)(37,49)(38,86)(41,89)(44,92)(47,95)(51,63)(52,64)(54,66)(55,67)(57,69)(58,70)(60,72)(61,73)(75,87)(76,88)(78,90)(79,91)(81,93)(82,94)(84,96), (1,49)(3,51)(4,52)(6,54)(7,55)(9,57)(10,58)(12,60)(13,61)(15,63)(16,64)(18,66)(19,67)(21,69)(22,70)(24,72)(25,73)(27,75)(28,76)(30,78)(31,79)(33,81)(34,82)(36,84)(37,85)(39,87)(40,88)(42,90)(43,91)(45,93)(46,94)(48,96), (1,92,84,43,8,18,25,68,36,67,32,66)(2,6,7,14,24,61,26,54,79,38,72,37)(3,4,17,21,58,29,51,76,41,69,34,5)(9,16,59,87,46,23,57,88,83,39,70,47)(10,53,75,28,65,93,82,77,27,52,89,45)(11,15,22,71,33,64,35,63,94,95,81,40)(12,19,56,90,49,20,60,91,80,42,73,44)(13,50,78,31,62,96,85,74,30,55,86,48) );
 
Copy content sage:G = PermutationGroup(['(1,73)(3,27)(4,28)(6,30)(7,31)(9,33)(10,34)(12,36)(13,37)(15,39)(16,40)(18,42)(19,43)(21,45)(22,46)(24,48)(25,49)(51,75)(52,76)(54,78)(55,79)(57,81)(58,82)(60,84)(61,85)(63,87)(64,88)(66,90)(67,91)(69,93)(70,94)(72,96)', '(1,73)(2,26)(4,28)(5,29)(7,31)(8,32)(10,34)(11,35)(13,37)(14,38)(16,40)(17,41)(19,43)(20,44)(22,46)(23,47)(25,49)(50,74)(52,76)(53,77)(55,79)(56,80)(58,82)(59,83)(61,85)(62,86)(64,88)(65,89)(67,91)(68,92)(70,94)(71,95)', '(1,85,49,37)(2,14,50,62)(4,16,52,64)(5,17,53,65)(7,19,55,67)(8,68,56,20)(9,57)(10,70,58,22)(11,71,59,23)(12,60)(13,73,61,25)(21,69)(24,72)(26,38,74,86)(28,40,76,88)(29,41,77,89)(31,43,79,91)(32,92,80,44)(33,81)(34,94,82,46)(35,95,83,47)(36,84)(45,93)(48,96)', '(1,95,85,83,49,47,37,35)(2,4,14,16,50,52,62,64)(5,7,17,19,53,55,65,67)(8,22,68,10,56,70,20,58)(9,21,57,69)(11,25,71,13,59,73,23,61)(12,24,60,72)(26,76,38,88,74,28,86,40)(27,75)(29,79,41,91,77,31,89,43)(30,78)(32,94,92,82,80,46,44,34)(33,93,81,45)(36,96,84,48)(39,87)(42,90)', '(1,73)(5,29)(6,30)(7,31)(11,35)(12,36)(13,37)(17,41)(18,42)(19,43)(23,47)(24,48)(25,49)(53,77)(54,78)(55,79)(59,83)(60,84)(61,85)(65,89)(66,90)(67,91)(71,95)(72,96)', '(1,49)(5,53)(6,54)(7,55)(11,59)(12,60)(13,61)(17,65)(18,66)(19,67)(23,71)(24,72)(25,73)(29,77)(30,78)(31,79)(35,83)(36,84)(37,85)(41,89)(42,90)(43,91)(47,95)(48,96)', '(1,91)(2,8)(4,10)(5,11)(7,13)(9,33)(12,36)(14,20)(16,22)(17,23)(19,25)(21,45)(24,48)(26,32)(28,34)(29,35)(31,37)(38,44)(40,46)(41,47)(43,49)(50,56)(52,58)(53,59)(55,61)(57,81)(60,84)(62,68)(64,70)(65,71)(67,73)(69,93)(72,96)(74,80)(76,82)(77,83)(79,85)(86,92)(88,94)(89,95)', '(1,91,73,67)(3,9,27,33)(4,10,28,34)(6,12,30,36)(7,13,31,37)(14,38)(15,45,39,21)(16,46,40,22)(17,41)(18,48,42,24)(19,49,43,25)(20,44)(23,47)(51,57,75,81)(52,58,76,82)(54,60,78,84)(55,61,79,85)(62,86)(63,93,87,69)(64,94,88,70)(65,89)(66,96,90,72)(68,92)(71,95)', '(1,49)(2,50)(4,52)(5,53)(7,55)(8,56)(10,58)(11,59)(13,61)(14,62)(16,64)(17,65)(19,67)(20,68)(22,70)(23,71)(25,73)(26,74)(28,76)(29,77)(31,79)(32,80)(34,82)(35,83)(37,85)(38,86)(40,88)(41,89)(43,91)(44,92)(46,94)(47,95)', '(1,85)(3,15)(4,16)(6,18)(7,19)(9,21)(10,22)(12,24)(13,25)(14,62)(17,65)(20,68)(23,71)(27,39)(28,40)(30,42)(31,43)(33,45)(34,46)(36,48)(37,49)(38,86)(41,89)(44,92)(47,95)(51,63)(52,64)(54,66)(55,67)(57,69)(58,70)(60,72)(61,73)(75,87)(76,88)(78,90)(79,91)(81,93)(82,94)(84,96)', '(1,49)(3,51)(4,52)(6,54)(7,55)(9,57)(10,58)(12,60)(13,61)(15,63)(16,64)(18,66)(19,67)(21,69)(22,70)(24,72)(25,73)(27,75)(28,76)(30,78)(31,79)(33,81)(34,82)(36,84)(37,85)(39,87)(40,88)(42,90)(43,91)(45,93)(46,94)(48,96)', '(1,92,84,43,8,18,25,68,36,67,32,66)(2,6,7,14,24,61,26,54,79,38,72,37)(3,4,17,21,58,29,51,76,41,69,34,5)(9,16,59,87,46,23,57,88,83,39,70,47)(10,53,75,28,65,93,82,77,27,52,89,45)(11,15,22,71,33,64,35,63,94,95,81,40)(12,19,56,90,49,20,60,91,80,42,73,44)(13,50,78,31,62,96,85,74,30,55,86,48)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(45831444451931809674437569606451050432784786081685060574196491781729567785865113946984364501887762085864693351061641309637578665190891917967812691998350550781530769325109679324523513859845043416801291010928774213423273642946860373523154944,24576)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14;
 

Group information

Description:$C_2^6.C_2\wr S_3$
Order: \(24576\)\(\medspace = 2^{13} \cdot 3 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_{1158}:C_{16}$, of order \(786432\)\(\medspace = 2^{18} \cdot 3 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_3$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12
Elements 1 1183 512 9056 3584 6144 4096 24576
Conjugacy classes   1 42 1 75 7 20 8 154
Divisions 1 42 1 72 5 14 2 137
Autjugacy classes 1 21 1 43 4 7 1 78

Minimal presentations

Permutation degree:not computed
Transitive degree:not computed
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none not computed none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k \mid c^{2}=d^{4}=e^{2}=f^{4}=g^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([14, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2688, 17753, 71, 783554, 201630, 307107, 13457, 330151, 367924, 33618, 420452, 200, 1649093, 16147, 412305, 47046, 268736, 1504, 334677, 22211, 90559, 329, 1236838, 1548, 161289, 1317143, 646837, 1005322, 620952, 251366, 20380, 35206, 1870859, 1391065, 453639, 43733, 35711, 349452, 1926314, 369136, 181326, 32128, 3913741, 1961595, 432809, 295623, 22049]); a,b,c,d,e,f,g,h,i,j,k := Explode([G.1, G.2, G.4, G.5, G.7, G.8, G.10, G.11, G.12, G.13, G.14]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "f", "f2", "g", "h", "i", "j", "k"]);
 
Copy content gap:G := PcGroupCode(45831444451931809674437569606451050432784786081685060574196491781729567785865113946984364501887762085864693351061641309637578665190891917967812691998350550781530769325109679324523513859845043416801291010928774213423273642946860373523154944,24576); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.8; g := G.10; h := G.11; i := G.12; j := G.13; k := G.14;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(45831444451931809674437569606451050432784786081685060574196491781729567785865113946984364501887762085864693351061641309637578665190891917967812691998350550781530769325109679324523513859845043416801291010928774213423273642946860373523154944,24576)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(45831444451931809674437569606451050432784786081685060574196491781729567785865113946984364501887762085864693351061641309637578665190891917967812691998350550781530769325109679324523513859845043416801291010928774213423273642946860373523154944,24576)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14;
 
Permutation group:Degree $96$ $\langle(1,73)(3,27)(4,28)(6,30)(7,31)(9,33)(10,34)(12,36)(13,37)(15,39)(16,40) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 96 | (1,73)(3,27)(4,28)(6,30)(7,31)(9,33)(10,34)(12,36)(13,37)(15,39)(16,40)(18,42)(19,43)(21,45)(22,46)(24,48)(25,49)(51,75)(52,76)(54,78)(55,79)(57,81)(58,82)(60,84)(61,85)(63,87)(64,88)(66,90)(67,91)(69,93)(70,94)(72,96), (1,73)(2,26)(4,28)(5,29)(7,31)(8,32)(10,34)(11,35)(13,37)(14,38)(16,40)(17,41)(19,43)(20,44)(22,46)(23,47)(25,49)(50,74)(52,76)(53,77)(55,79)(56,80)(58,82)(59,83)(61,85)(62,86)(64,88)(65,89)(67,91)(68,92)(70,94)(71,95), (1,85,49,37)(2,14,50,62)(4,16,52,64)(5,17,53,65)(7,19,55,67)(8,68,56,20)(9,57)(10,70,58,22)(11,71,59,23)(12,60)(13,73,61,25)(21,69)(24,72)(26,38,74,86)(28,40,76,88)(29,41,77,89)(31,43,79,91)(32,92,80,44)(33,81)(34,94,82,46)(35,95,83,47)(36,84)(45,93)(48,96), (1,95,85,83,49,47,37,35)(2,4,14,16,50,52,62,64)(5,7,17,19,53,55,65,67)(8,22,68,10,56,70,20,58)(9,21,57,69)(11,25,71,13,59,73,23,61)(12,24,60,72)(26,76,38,88,74,28,86,40)(27,75)(29,79,41,91,77,31,89,43)(30,78)(32,94,92,82,80,46,44,34)(33,93,81,45)(36,96,84,48)(39,87)(42,90), (1,73)(5,29)(6,30)(7,31)(11,35)(12,36)(13,37)(17,41)(18,42)(19,43)(23,47)(24,48)(25,49)(53,77)(54,78)(55,79)(59,83)(60,84)(61,85)(65,89)(66,90)(67,91)(71,95)(72,96), (1,49)(5,53)(6,54)(7,55)(11,59)(12,60)(13,61)(17,65)(18,66)(19,67)(23,71)(24,72)(25,73)(29,77)(30,78)(31,79)(35,83)(36,84)(37,85)(41,89)(42,90)(43,91)(47,95)(48,96), (1,91)(2,8)(4,10)(5,11)(7,13)(9,33)(12,36)(14,20)(16,22)(17,23)(19,25)(21,45)(24,48)(26,32)(28,34)(29,35)(31,37)(38,44)(40,46)(41,47)(43,49)(50,56)(52,58)(53,59)(55,61)(57,81)(60,84)(62,68)(64,70)(65,71)(67,73)(69,93)(72,96)(74,80)(76,82)(77,83)(79,85)(86,92)(88,94)(89,95), (1,91,73,67)(3,9,27,33)(4,10,28,34)(6,12,30,36)(7,13,31,37)(14,38)(15,45,39,21)(16,46,40,22)(17,41)(18,48,42,24)(19,49,43,25)(20,44)(23,47)(51,57,75,81)(52,58,76,82)(54,60,78,84)(55,61,79,85)(62,86)(63,93,87,69)(64,94,88,70)(65,89)(66,96,90,72)(68,92)(71,95), (1,49)(2,50)(4,52)(5,53)(7,55)(8,56)(10,58)(11,59)(13,61)(14,62)(16,64)(17,65)(19,67)(20,68)(22,70)(23,71)(25,73)(26,74)(28,76)(29,77)(31,79)(32,80)(34,82)(35,83)(37,85)(38,86)(40,88)(41,89)(43,91)(44,92)(46,94)(47,95), (1,85)(3,15)(4,16)(6,18)(7,19)(9,21)(10,22)(12,24)(13,25)(14,62)(17,65)(20,68)(23,71)(27,39)(28,40)(30,42)(31,43)(33,45)(34,46)(36,48)(37,49)(38,86)(41,89)(44,92)(47,95)(51,63)(52,64)(54,66)(55,67)(57,69)(58,70)(60,72)(61,73)(75,87)(76,88)(78,90)(79,91)(81,93)(82,94)(84,96), (1,49)(3,51)(4,52)(6,54)(7,55)(9,57)(10,58)(12,60)(13,61)(15,63)(16,64)(18,66)(19,67)(21,69)(22,70)(24,72)(25,73)(27,75)(28,76)(30,78)(31,79)(33,81)(34,82)(36,84)(37,85)(39,87)(40,88)(42,90)(43,91)(45,93)(46,94)(48,96), (1,92,84,43,8,18,25,68,36,67,32,66)(2,6,7,14,24,61,26,54,79,38,72,37)(3,4,17,21,58,29,51,76,41,69,34,5)(9,16,59,87,46,23,57,88,83,39,70,47)(10,53,75,28,65,93,82,77,27,52,89,45)(11,15,22,71,33,64,35,63,94,95,81,40)(12,19,56,90,49,20,60,91,80,42,73,44)(13,50,78,31,62,96,85,74,30,55,86,48) >;
 
Copy content gap:G := Group( (1,73)(3,27)(4,28)(6,30)(7,31)(9,33)(10,34)(12,36)(13,37)(15,39)(16,40)(18,42)(19,43)(21,45)(22,46)(24,48)(25,49)(51,75)(52,76)(54,78)(55,79)(57,81)(58,82)(60,84)(61,85)(63,87)(64,88)(66,90)(67,91)(69,93)(70,94)(72,96), (1,73)(2,26)(4,28)(5,29)(7,31)(8,32)(10,34)(11,35)(13,37)(14,38)(16,40)(17,41)(19,43)(20,44)(22,46)(23,47)(25,49)(50,74)(52,76)(53,77)(55,79)(56,80)(58,82)(59,83)(61,85)(62,86)(64,88)(65,89)(67,91)(68,92)(70,94)(71,95), (1,85,49,37)(2,14,50,62)(4,16,52,64)(5,17,53,65)(7,19,55,67)(8,68,56,20)(9,57)(10,70,58,22)(11,71,59,23)(12,60)(13,73,61,25)(21,69)(24,72)(26,38,74,86)(28,40,76,88)(29,41,77,89)(31,43,79,91)(32,92,80,44)(33,81)(34,94,82,46)(35,95,83,47)(36,84)(45,93)(48,96), (1,95,85,83,49,47,37,35)(2,4,14,16,50,52,62,64)(5,7,17,19,53,55,65,67)(8,22,68,10,56,70,20,58)(9,21,57,69)(11,25,71,13,59,73,23,61)(12,24,60,72)(26,76,38,88,74,28,86,40)(27,75)(29,79,41,91,77,31,89,43)(30,78)(32,94,92,82,80,46,44,34)(33,93,81,45)(36,96,84,48)(39,87)(42,90), (1,73)(5,29)(6,30)(7,31)(11,35)(12,36)(13,37)(17,41)(18,42)(19,43)(23,47)(24,48)(25,49)(53,77)(54,78)(55,79)(59,83)(60,84)(61,85)(65,89)(66,90)(67,91)(71,95)(72,96), (1,49)(5,53)(6,54)(7,55)(11,59)(12,60)(13,61)(17,65)(18,66)(19,67)(23,71)(24,72)(25,73)(29,77)(30,78)(31,79)(35,83)(36,84)(37,85)(41,89)(42,90)(43,91)(47,95)(48,96), (1,91)(2,8)(4,10)(5,11)(7,13)(9,33)(12,36)(14,20)(16,22)(17,23)(19,25)(21,45)(24,48)(26,32)(28,34)(29,35)(31,37)(38,44)(40,46)(41,47)(43,49)(50,56)(52,58)(53,59)(55,61)(57,81)(60,84)(62,68)(64,70)(65,71)(67,73)(69,93)(72,96)(74,80)(76,82)(77,83)(79,85)(86,92)(88,94)(89,95), (1,91,73,67)(3,9,27,33)(4,10,28,34)(6,12,30,36)(7,13,31,37)(14,38)(15,45,39,21)(16,46,40,22)(17,41)(18,48,42,24)(19,49,43,25)(20,44)(23,47)(51,57,75,81)(52,58,76,82)(54,60,78,84)(55,61,79,85)(62,86)(63,93,87,69)(64,94,88,70)(65,89)(66,96,90,72)(68,92)(71,95), (1,49)(2,50)(4,52)(5,53)(7,55)(8,56)(10,58)(11,59)(13,61)(14,62)(16,64)(17,65)(19,67)(20,68)(22,70)(23,71)(25,73)(26,74)(28,76)(29,77)(31,79)(32,80)(34,82)(35,83)(37,85)(38,86)(40,88)(41,89)(43,91)(44,92)(46,94)(47,95), (1,85)(3,15)(4,16)(6,18)(7,19)(9,21)(10,22)(12,24)(13,25)(14,62)(17,65)(20,68)(23,71)(27,39)(28,40)(30,42)(31,43)(33,45)(34,46)(36,48)(37,49)(38,86)(41,89)(44,92)(47,95)(51,63)(52,64)(54,66)(55,67)(57,69)(58,70)(60,72)(61,73)(75,87)(76,88)(78,90)(79,91)(81,93)(82,94)(84,96), (1,49)(3,51)(4,52)(6,54)(7,55)(9,57)(10,58)(12,60)(13,61)(15,63)(16,64)(18,66)(19,67)(21,69)(22,70)(24,72)(25,73)(27,75)(28,76)(30,78)(31,79)(33,81)(34,82)(36,84)(37,85)(39,87)(40,88)(42,90)(43,91)(45,93)(46,94)(48,96), (1,92,84,43,8,18,25,68,36,67,32,66)(2,6,7,14,24,61,26,54,79,38,72,37)(3,4,17,21,58,29,51,76,41,69,34,5)(9,16,59,87,46,23,57,88,83,39,70,47)(10,53,75,28,65,93,82,77,27,52,89,45)(11,15,22,71,33,64,35,63,94,95,81,40)(12,19,56,90,49,20,60,91,80,42,73,44)(13,50,78,31,62,96,85,74,30,55,86,48) );
 
Copy content sage:G = PermutationGroup(['(1,73)(3,27)(4,28)(6,30)(7,31)(9,33)(10,34)(12,36)(13,37)(15,39)(16,40)(18,42)(19,43)(21,45)(22,46)(24,48)(25,49)(51,75)(52,76)(54,78)(55,79)(57,81)(58,82)(60,84)(61,85)(63,87)(64,88)(66,90)(67,91)(69,93)(70,94)(72,96)', '(1,73)(2,26)(4,28)(5,29)(7,31)(8,32)(10,34)(11,35)(13,37)(14,38)(16,40)(17,41)(19,43)(20,44)(22,46)(23,47)(25,49)(50,74)(52,76)(53,77)(55,79)(56,80)(58,82)(59,83)(61,85)(62,86)(64,88)(65,89)(67,91)(68,92)(70,94)(71,95)', '(1,85,49,37)(2,14,50,62)(4,16,52,64)(5,17,53,65)(7,19,55,67)(8,68,56,20)(9,57)(10,70,58,22)(11,71,59,23)(12,60)(13,73,61,25)(21,69)(24,72)(26,38,74,86)(28,40,76,88)(29,41,77,89)(31,43,79,91)(32,92,80,44)(33,81)(34,94,82,46)(35,95,83,47)(36,84)(45,93)(48,96)', '(1,95,85,83,49,47,37,35)(2,4,14,16,50,52,62,64)(5,7,17,19,53,55,65,67)(8,22,68,10,56,70,20,58)(9,21,57,69)(11,25,71,13,59,73,23,61)(12,24,60,72)(26,76,38,88,74,28,86,40)(27,75)(29,79,41,91,77,31,89,43)(30,78)(32,94,92,82,80,46,44,34)(33,93,81,45)(36,96,84,48)(39,87)(42,90)', '(1,73)(5,29)(6,30)(7,31)(11,35)(12,36)(13,37)(17,41)(18,42)(19,43)(23,47)(24,48)(25,49)(53,77)(54,78)(55,79)(59,83)(60,84)(61,85)(65,89)(66,90)(67,91)(71,95)(72,96)', '(1,49)(5,53)(6,54)(7,55)(11,59)(12,60)(13,61)(17,65)(18,66)(19,67)(23,71)(24,72)(25,73)(29,77)(30,78)(31,79)(35,83)(36,84)(37,85)(41,89)(42,90)(43,91)(47,95)(48,96)', '(1,91)(2,8)(4,10)(5,11)(7,13)(9,33)(12,36)(14,20)(16,22)(17,23)(19,25)(21,45)(24,48)(26,32)(28,34)(29,35)(31,37)(38,44)(40,46)(41,47)(43,49)(50,56)(52,58)(53,59)(55,61)(57,81)(60,84)(62,68)(64,70)(65,71)(67,73)(69,93)(72,96)(74,80)(76,82)(77,83)(79,85)(86,92)(88,94)(89,95)', '(1,91,73,67)(3,9,27,33)(4,10,28,34)(6,12,30,36)(7,13,31,37)(14,38)(15,45,39,21)(16,46,40,22)(17,41)(18,48,42,24)(19,49,43,25)(20,44)(23,47)(51,57,75,81)(52,58,76,82)(54,60,78,84)(55,61,79,85)(62,86)(63,93,87,69)(64,94,88,70)(65,89)(66,96,90,72)(68,92)(71,95)', '(1,49)(2,50)(4,52)(5,53)(7,55)(8,56)(10,58)(11,59)(13,61)(14,62)(16,64)(17,65)(19,67)(20,68)(22,70)(23,71)(25,73)(26,74)(28,76)(29,77)(31,79)(32,80)(34,82)(35,83)(37,85)(38,86)(40,88)(41,89)(43,91)(44,92)(46,94)(47,95)', '(1,85)(3,15)(4,16)(6,18)(7,19)(9,21)(10,22)(12,24)(13,25)(14,62)(17,65)(20,68)(23,71)(27,39)(28,40)(30,42)(31,43)(33,45)(34,46)(36,48)(37,49)(38,86)(41,89)(44,92)(47,95)(51,63)(52,64)(54,66)(55,67)(57,69)(58,70)(60,72)(61,73)(75,87)(76,88)(78,90)(79,91)(81,93)(82,94)(84,96)', '(1,49)(3,51)(4,52)(6,54)(7,55)(9,57)(10,58)(12,60)(13,61)(15,63)(16,64)(18,66)(19,67)(21,69)(22,70)(24,72)(25,73)(27,75)(28,76)(30,78)(31,79)(33,81)(34,82)(36,84)(37,85)(39,87)(40,88)(42,90)(43,91)(45,93)(46,94)(48,96)', '(1,92,84,43,8,18,25,68,36,67,32,66)(2,6,7,14,24,61,26,54,79,38,72,37)(3,4,17,21,58,29,51,76,41,69,34,5)(9,16,59,87,46,23,57,88,83,39,70,47)(10,53,75,28,65,93,82,77,27,52,89,45)(11,15,22,71,33,64,35,63,94,95,81,40)(12,19,56,90,49,20,60,91,80,42,73,44)(13,50,78,31,62,96,85,74,30,55,86,48)'])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^6$ . $(C_2\wr S_3)$ (2) $(C_2^6.C_2^6)$ . $S_3$ $C_2^7$ . $(C_2^3:S_4)$ (2) $C_2^5$ . $(C_2^5:S_4)$ all 38
Aut. group: $\Aut(C_2\times C_8^2)$

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 75 normal subgroups (43 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2^2$ $G/Z \simeq$ $C_4^2.C_2^4:S_4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^6.C_2^4.C_6$ $G/G' \simeq$ $C_2^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^5$ $G/\Phi \simeq$ $C_2^5:S_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^6.C_2^6$ $G/\operatorname{Fit} \simeq$ $S_3$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^6.C_2\wr S_3$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^4$ $G/\operatorname{soc} \simeq$ $C_2\times C_2^5.S_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^4.C_2^4\wr C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$

Subgroup diagram and profile

Series

Derived series $C_2^6.C_2\wr S_3$ $\rhd$ $C_2^6.C_2^4.C_6$ $\rhd$ $C_2^6.C_2^4$ $\rhd$ $C_2^4$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^6.C_2\wr S_3$ $\rhd$ $C_2^4.C_2^6.C_6.C_2$ $\rhd$ $C_2^6.C_2^4.C_6$ $\rhd$ $C_2^6.C_2^4.C_3$ $\rhd$ $C_2^6.C_2^4$ $\rhd$ $C_2^4.C_4^2$ $\rhd$ $C_2^6$ $\rhd$ $C_2^4$ $\rhd$ $C_2^2$ $\rhd$ $C_2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^6.C_2\wr S_3$ $\rhd$ $C_2^6.C_2^4.C_6$ $\rhd$ $C_2^6.C_2^4.C_3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2^2$ $\lhd$ $C_2^3$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $154 \times 154$ character table is not available for this group.

Rational character table

The $137 \times 137$ rational character table is not available for this group.