Properties

Label 243.65.27.b1
Order $ 3^{2} $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(3\)
Generators: $\left(\begin{array}{rrrr} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 2 & 0 & 0 & 0 \end{array}\right), \left(\begin{array}{rrrr} 2 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 2 & 1 & 1 \\ 2 & 1 & 0 & 0 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_3^3:C_3^2$
Order: \(243\)\(\medspace = 3^{5} \)
Exponent: \(3\)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient set structure

Since this subgroup has trivial core, the ambient group $G$ acts faithfully and transitively on the set of cosets of $H$. The resulting permutation representation is isomorphic to 27T101.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3:S_3.\SO(5,3)$, of order \(8398080\)\(\medspace = 2^{8} \cdot 3^{8} \cdot 5 \)
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(S)$$\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(486\)\(\medspace = 2 \cdot 3^{5} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3^3$
Normalizer:$C_3^3$
Normal closure:$C_3^3$
Core:$C_1$
Minimal over-subgroups:$C_3^3$
Maximal under-subgroups:$C_3$

Other information

Number of subgroups in this autjugacy class$360$
Number of conjugacy classes in this autjugacy class$40$
Möbius function$0$
Projective image$C_3^3:C_3^2$