Properties

Label 24200.be.121.a1
Order $ 2^{3} \cdot 5^{2} $
Index $ 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{10}^2$
Order: \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)
Index: \(121\)\(\medspace = 11^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $a^{5}, c^{55}, a^{2}, b^{11}, c^{22}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and a Hall subgroup.

Ambient group ($G$) information

Description: $C_2\times C_{110}:F_{11}$
Order: \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{22}^2.C_5.C_{30}.C_{10}.C_2^4$
$\operatorname{Aut}(H)$ $\GL(2,5)\times \GL(3,2)$, of order \(80640\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 5 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{10}^2$
Normalizer:$C_2\times C_{10}^2$
Normal closure:$C_2\times C_{110}:F_{11}$
Core:$C_2\times C_{10}$
Minimal over-subgroups:$C_{22}:C_{10}^2$
Maximal under-subgroups:$C_{10}^2$$C_{10}^2$$C_2^2\times C_{10}$$C_2^2\times C_{10}$

Other information

Number of subgroups in this autjugacy class$121$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_{11}:F_{11}$