Properties

Label 24192.u.672.v1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2^{5} \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_{12}$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(672\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,2)(3,4,6,5)(8,13,15)(11,14,12), (3,6)(4,5), (7,9,10)(8,13,15)(11,12,14), (1,2)(3,5,6,4)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_4\times \SL(2,8):C_6$
Order: \(24192\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7 \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8).C_3\times C_2\wr C_2^2$, of order \(96768\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2\times \GL(2,3)$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_6\times C_{12}$
Normalizer:$C_2\times D_{36}:C_6$
Normal closure:$\SL(2,8):C_{12}$
Core:$C_4$
Minimal over-subgroups:$C_9:C_{12}$$C_6\times C_{12}$$D_4\times C_3^2$$S_3\times C_{12}$$S_3\times C_{12}$$C_3\times D_{12}$
Maximal under-subgroups:$C_3\times C_6$$C_{12}$$C_{12}$

Other information

Number of subgroups in this autjugacy class$56$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$C_2^3\times {}^2G(2,3)$