Properties

Label 24192.u.2016.u1
Order $ 2^{2} \cdot 3 $
Index $ 2^{5} \cdot 3^{2} \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(7,12,11)(10,15,14), (3,6)(4,5), (3,5,6,4)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $D_4\times \SL(2,8):C_6$
Order: \(24192\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7 \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8).C_3\times C_2\wr C_2^2$, of order \(96768\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{12}\times D_6$
Normalizer:$C_6^2:C_2^3$
Normal closure:$C_2\times \SL(2,8):C_{12}$
Core:$C_4$
Minimal over-subgroups:$C_7:C_{12}$$C_4\times A_4$$C_3\times C_{12}$$C_2\times C_{12}$$C_3\times D_4$$C_2\times C_{12}$$C_2\times C_{12}$$C_3\times D_4$
Maximal under-subgroups:$C_6$$C_4$

Other information

Number of subgroups in this autjugacy class$168$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-12$
Projective image$C_2^3\times {}^2G(2,3)$