Properties

Label 24192.u.336.d1
Order $ 2^{3} \cdot 3^{2} $
Index $ 2^{4} \cdot 3 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_{18}$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Index: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $\langle(3,6), (1,2)(3,6)(4,5)(7,10,8,9,13,11,15,14,12), (3,6)(7,9,15)(8,11,12)(10,13,14), (1,2)(3,6)(4,5)(7,14)(8,11)(9,13)(10,15), (1,2)(3,6)(4,5)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_4\times \SL(2,8):C_6$
Order: \(24192\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7 \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8).C_3\times C_2\wr C_2^2$, of order \(96768\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_6^2.S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$W$$C_9:C_6$, of order \(54\)\(\medspace = 2 \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_6^2.D_6$
Normal closure:$C_2\times D_4\times \SL(2,8)$
Core:$C_2$
Minimal over-subgroups:$C_2^2\times \SL(2,8)$$D_{18}:C_6$$C_2^2\times D_{18}$
Maximal under-subgroups:$C_2\times C_{18}$$D_{18}$$D_{18}$$D_{18}$$D_{18}$$C_2\times D_6$

Other information

Number of subgroups in this autjugacy class$224$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$D_4\times {}^2G(2,3)$