Properties

Label 24192.u.12.d1
Order $ 2^{5} \cdot 3^{2} \cdot 7 $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times \SL(2,8)$
Order: \(2016\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
Generators: $\langle(3,6), (3,6)(7,13,14)(8,10,15)(9,11,12), (1,2)(3,6)(4,5), (3,6)(7,10,14)(8,9,11)(12,15,13)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $D_4\times \SL(2,8):C_6$
Order: \(24192\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7 \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8).C_3\times C_2\wr C_2^2$, of order \(96768\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $S_3\times {}^2G(2,3)$, of order \(9072\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7 \)
$W$${}^2G(2,3)$, of order \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2^3\times {}^2G(2,3)$
Normal closure:$C_2\times D_4\times \SL(2,8)$
Core:$C_2\times \SL(2,8)$
Minimal over-subgroups:$C_2^2\times {}^2G(2,3)$$C_2^3\times \SL(2,8)$
Maximal under-subgroups:$C_2\times \SL(2,8)$$C_2\times \SL(2,8)$$C_2^2\times F_8$$C_2\times D_{18}$$C_2\times D_{14}$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$0$
Projective image$D_4\times {}^2G(2,3)$