Properties

Label 24192.u.216.f1
Order $ 2^{4} \cdot 7 $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_{28}$
Order: \(112\)\(\medspace = 2^{4} \cdot 7 \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $\langle(3,5,6,4)(8,12,10,15,14,9,11), (1,2), (1,2)(3,4)(5,6)(7,13)(8,10)(9,14)(11,15), (3,6)(4,5), (3,5,6,4)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_4\times \SL(2,8):C_6$
Order: \(24192\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7 \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\SL(2,8).C_3\times C_2\wr C_2^2$, of order \(96768\)\(\medspace = 2^{9} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2\wr C_2^2\times F_7$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$W$$C_2^2\times F_7$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2\times D_4\times F_7$
Normal closure:$C_2\times D_4\times \SL(2,8)$
Core:$C_2\times C_4$
Minimal over-subgroups:$D_{28}:C_6$$D_4\times D_{14}$
Maximal under-subgroups:$C_2\times D_{14}$$C_2\times C_{28}$$D_{28}$$C_2\times D_4$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$C_2^2\times {}^2G(2,3)$