Properties

Label 24192.bb.9.b1
Order $ 2^{7} \cdot 3 \cdot 7 $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^6:(S_3\times C_7)$
Order: \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $h, gh, b^{9}, ef, ce, fh, a^{3}, b^{21}, dfg$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $F_{64}:C_6$
Order: \(24192\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7 \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{64}:C_6$, of order \(24192\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2^6:C_{21}:C_6$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)
$W$$C_2^6:C_{21}:C_6$, of order \(8064\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_2^6:C_{21}:C_6$
Normal closure:$C_2^6.C_{63}.C_2$
Core:$C_2^6:C_{21}$
Minimal over-subgroups:$C_2^6.C_{63}.C_2$$C_2^6:C_{21}:C_6$
Maximal under-subgroups:$C_2^6:C_{21}$$C_2^4:F_8$$C_2^4:S_4$$S_3\times C_7$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$F_{64}:C_6$