Properties

Label 24192.bb.27.a1
Order $ 2^{7} \cdot 7 $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^4:F_8$
Order: \(896\)\(\medspace = 2^{7} \cdot 7 \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Generators: $a^{3}, ef, g, cf, fh, h, b^{9}, defgh$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Hall subgroup, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $F_{64}:C_6$
Order: \(24192\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7 \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{64}:C_6$, of order \(24192\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2^4:F_8:A_4$, of order \(10752\)\(\medspace = 2^{9} \cdot 3 \cdot 7 \)
$W$$C_2^3:F_8:C_6$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_2^3:F_8:C_6$
Normal closure:$C_2^6.C_{63}.C_2$
Core:$C_2^3:F_8$
Minimal over-subgroups:$C_2^3:F_8:C_6$$C_2^6:(S_3\times C_7)$
Maximal under-subgroups:$C_2^3:F_8$$C_2^3\wr C_2$$C_2\times F_8$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$F_{64}:C_6$