Subgroup ($H$) information
Description: | $C_{13}^2:C_4$ |
Order: | \(676\)\(\medspace = 2^{2} \cdot 13^{2} \) |
Index: | \(3570\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \) |
Exponent: | \(52\)\(\medspace = 2^{2} \cdot 13 \) |
Generators: |
$\left[ \left(\begin{array}{rr}
57 & 137 \\
1 & 141
\end{array}\right) \right], \left[ \left(\begin{array}{rr}
45 & 130 \\
162 & 1
\end{array}\right) \right], \left[ \left(\begin{array}{rr}
116 & 165 \\
97 & 21
\end{array}\right) \right], \left[ \left(\begin{array}{rr}
10 & 8 \\
108 & 163
\end{array}\right) \right]$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $\PSL(2,169)$ |
Order: | \(2413320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \) |
Exponent: | \(92820\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
Derived length: | $0$ |
The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\PSL(2,169).C_2^2$, of order \(9653280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{2} \cdot 17 \) |
$\operatorname{Aut}(H)$ | $C_{13}^2.\GL(2,13)$, of order \(4429152\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7 \cdot 13^{3} \) |
$W$ | $C_{13}^2:C_{84}$, of order \(14196\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $170$ |
Möbius function | $0$ |
Projective image | $\PSL(2,169)$ |