Subgroup ($H$) information
Description: | $C_2\times C_4$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Index: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Exponent: | \(4\)\(\medspace = 2^{2} \) |
Generators: |
$a^{2}, b^{15}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), central (hence abelian, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_{10}:C_{24}$ |
Order: | \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \) |
Exponent: | \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \) |
Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Quotient group ($Q$) structure
Description: | $C_3\times D_5$ |
Order: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Automorphism Group: | $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \) |
Outer Automorphisms: | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $D_{10}.C_2^5$, of order \(640\)\(\medspace = 2^{7} \cdot 5 \) |
$\operatorname{Aut}(H)$ | $D_4$, of order \(8\)\(\medspace = 2^{3} \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(160\)\(\medspace = 2^{5} \cdot 5 \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_{10}:C_{24}$ | ||
Normalizer: | $C_{10}:C_{24}$ | ||
Minimal over-subgroups: | $C_2\times C_{20}$ | $C_2\times C_{12}$ | $C_2\times C_8$ |
Maximal under-subgroups: | $C_2^2$ | $C_4$ | $C_4$ |
Other information
Möbius function | $-5$ |
Projective image | $C_3\times D_5$ |