Properties

Label 240.204.60.a1.a1
Order $ 2^{2} $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(2\)
Generators: $\left(\begin{array}{ll}\alpha^{10} & \alpha^{11} \\ \alpha^{14} & \alpha^{10} \\ \end{array}\right), \left(\begin{array}{ll}\alpha^{5} & \alpha \\ \alpha^{4} & \alpha^{5} \\ \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_2^4:C_{15}$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_5\times A_4$
Order: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Automorphism Group: $C_4\times S_4$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Outer Automorphisms: $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times \AGammaL(2,4)$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(768\)\(\medspace = 2^{8} \cdot 3 \)
$W$$C_3$, of order \(3\)

Related subgroups

Centralizer:$C_2^3\times C_{10}$
Normalizer:$C_2^4:C_{15}$
Complements:$C_5\times A_4$ $C_5\times A_4$ $C_5\times A_4$ $C_5\times A_4$
Minimal over-subgroups:$C_2\times C_{10}$$A_4$$C_2^3$
Maximal under-subgroups:$C_2$
Autjugate subgroups:240.204.60.a1.b1240.204.60.a1.c1240.204.60.a1.d1240.204.60.a1.e1

Other information

Möbius function$-4$
Projective image$C_2^4:C_{15}$