Properties

Label 240.204.120.a1.a1
Order $ 2 $
Index $ 2^{3} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Exponent: \(2\)
Generators: $\left(\begin{array}{ll}0 & \alpha^{6} \\ \alpha^{9} & 0 \\ \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_2^4:C_{15}$
Order: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times \AGammaL(2,4)$, of order \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(S)$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(1536\)\(\medspace = 2^{9} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^3\times C_{10}$
Normalizer:$C_2^3\times C_{10}$
Normal closure:$C_2^2$
Core:$C_1$
Minimal over-subgroups:$C_{10}$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$
Maximal under-subgroups:$C_1$
Autjugate subgroups:240.204.120.a1.b1240.204.120.a1.c1240.204.120.a1.d1240.204.120.a1.e1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$0$
Projective image$C_2^4:C_{15}$