Properties

Label 23310331287699456000.a.65280.a1.a1
Order $ 2^{23} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 $
Index $ 2^{8} \cdot 3 \cdot 5 \cdot 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^{13}.A_{14}$
Order: \(357082280755200\)\(\medspace = 2^{23} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \)
Index: \(65280\)\(\medspace = 2^{8} \cdot 3 \cdot 5 \cdot 17 \)
Exponent: \(720720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \)
Generators: $\langle(13,14)(15,34,26,16,33,25)(19,20)(21,22)(23,24)(29,30), (7,31)(8,32)(9,11,10,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $0$

The subgroup is nonabelian and perfect (hence nonsolvable).

Ambient group ($G$) information

Description: $C_2^{17}.A_{17}$
Order: \(23310331287699456000\)\(\medspace = 2^{31} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \)
Exponent: \(12252240\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$Group of order \(23310331287699456000\)\(\medspace = 2^{31} \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \)
$\operatorname{Aut}(H)$ Group of order \(714164561510400\)\(\medspace = 2^{24} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$680$
Möbius function not computed
Projective image not computed