Properties

Label 357...200.a
Order \( 2^{23} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \)
Exponent \( 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{24} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $28$
Trans deg. $28$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 28 | (1,16,7,20,11,18,24,5,25,28,9,21,13,2,15,8,19,12,17,23,6,26,27,10,22,14)(3,4), (1,24,11,26,8,20,22,18,3,13)(2,23,12,25,7,19,21,17,4,14)(5,15,6,16)(9,10) >;
 
Copy content gap:G := Group( (1,16,7,20,11,18,24,5,25,28,9,21,13,2,15,8,19,12,17,23,6,26,27,10,22,14)(3,4), (1,24,11,26,8,20,22,18,3,13)(2,23,12,25,7,19,21,17,4,14)(5,15,6,16)(9,10) );
 
Copy content sage:G = PermutationGroup(['(1,16,7,20,11,18,24,5,25,28,9,21,13,2,15,8,19,12,17,23,6,26,27,10,22,14)(3,4)', '(1,24,11,26,8,20,22,18,3,13)(2,23,12,25,7,19,21,17,4,14)(5,15,6,16)(9,10)'])
 

Group information

Description:$C_2^{13}.A_{14}$
Order: \(357082280755200\)\(\medspace = 2^{23} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(720720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(714164561510400\)\(\medspace = 2^{24} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $A_{14}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and perfect (hence nonsolvable).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 20 21 22 24 26 28 30 33 35 36 40 42 45 48 56 60 66 70 84 90 120
Elements 1 288680575 6029065952 584614622592 18598804224 3410381889824 3643854888960 9424111656960 1673823191040 5547256915200 1352584396800 35591252336640 27467867750400 4195153797120 747193294848 7439214182400 14692448010240 26720727441408 752777625600 9468090777600 41039664906240 27467867750400 7970586624000 10003848830976 10820675174400 1275293859840 7439214182400 13762546237440 7394933145600 7935161794560 14878428364800 6376469299200 14134506946560 10820675174400 8927057018880 3188234649600 7935161794560 2975685672960 357082280755200
Conjugacy classes   1 19 4 68 2 82 2 54 2 28 1 150 2 12 4 11 14 39 2 3 61 2 12 42 2 1 4 14 18 2 6 4 22 2 7 4 2 4 709
Divisions 1 19 4 68 2 82 2 52 2 28 1 150 1 12 4 10 12 39 2 3 59 1 12 40 1 1 4 13 16 1 5 4 22 1 5 4 1 4 688
Autjugacy classes 1 19 4 66 2 82 2 51 2 28 1 148 1 12 4 10 12 38 2 3 58 1 12 40 1 1 4 13 16 1 5 4 22 1 5 4 1 4 681

Minimal presentations

Permutation degree:$28$
Transitive degree:$28$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 14 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $28$ $\langle(1,16,7,20,11,18,24,5,25,28,9,21,13,2,15,8,19,12,17,23,6,26,27,10,22,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 28 | (1,16,7,20,11,18,24,5,25,28,9,21,13,2,15,8,19,12,17,23,6,26,27,10,22,14)(3,4), (1,24,11,26,8,20,22,18,3,13)(2,23,12,25,7,19,21,17,4,14)(5,15,6,16)(9,10) >;
 
Copy content gap:G := Group( (1,16,7,20,11,18,24,5,25,28,9,21,13,2,15,8,19,12,17,23,6,26,27,10,22,14)(3,4), (1,24,11,26,8,20,22,18,3,13)(2,23,12,25,7,19,21,17,4,14)(5,15,6,16)(9,10) );
 
Copy content sage:G = PermutationGroup(['(1,16,7,20,11,18,24,5,25,28,9,21,13,2,15,8,19,12,17,23,6,26,27,10,22,14)(3,4)', '(1,24,11,26,8,20,22,18,3,13)(2,23,12,25,7,19,21,17,4,14)(5,15,6,16)(9,10)'])
 
Transitive group: 28T1809 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^{13}$ . $A_{14}$ $C_2$ . $(C_2^{12}.A_{14})$ more information

Elements of the group are displayed as permutations of degree 28.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 4 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_2^{13}.A_{14}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^6.C_2^6.C_2^6.C_2^5$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4:C_3$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^2$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^2$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}$
13-Sylow subgroup: $P_{ 13 } \simeq$ $C_{13}$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $709 \times 709$ character table is not available for this group.

Rational character table

The $688 \times 688$ rational character table is not available for this group.