Properties

Label 23040.g.1.a1
Order $ 2^{9} \cdot 3^{2} \cdot 5 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times A_4\times \GL(2,5)$
Order: \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
Index: $1$
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Generators: $\left(\begin{array}{rr} 11 & 17 \\ 19 & 0 \end{array}\right), \left(\begin{array}{rr} 13 & 0 \\ 0 & 13 \end{array}\right), \left(\begin{array}{rr} 9 & 0 \\ 0 & 9 \end{array}\right), \left(\begin{array}{rr} 17 & 4 \\ 12 & 13 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 10 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 10 \\ 10 & 1 \end{array}\right), \left(\begin{array}{rr} 11 & 5 \\ 15 & 16 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 1 & 10 \\ 10 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Hall subgroup, and nonsolvable.

Ambient group ($G$) information

Description: $C_2^2\times A_4\times \GL(2,5)$
Order: \(23040\)\(\medspace = 2^{9} \cdot 3^{2} \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^3.A_4^2.C_2^3.S_5$
$\operatorname{Aut}(H)$ $C_2^3.A_4^2.C_2^3.S_5$
$W$$A_4\times S_5$, of order \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$C_2^2\times A_4\times \GL(2,5)$
Complements:$C_1$
Maximal under-subgroups:$C_2\times A_4\times \GL(2,5)$$A_4\times \SL(2,5):C_2^3$$C_2^4\times \GL(2,5)$$C_2\times C_6\times \GL(2,5)$$(C_2^4\times \SL(2,3)):C_{12}$$A_4\times D_{10}:C_4^2$$A_4\times C_{24}:C_2^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4\times S_5$