Subgroup ($H$) information
Description: | $C_2^2$ |
Order: | \(4\)\(\medspace = 2^{2} \) |
Index: | \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
Exponent: | \(2\) |
Generators: |
$\left(\begin{array}{rr}
9 & 1 \\
0 & 11
\end{array}\right), \left(\begin{array}{rr}
11 & 0 \\
0 & 11
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.
Ambient group ($G$) information
Description: | $C_8:D_6\times S_4$ |
Order: | \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_6\times A_4).C_2^6.C_2^3$ |
$\operatorname{Aut}(H)$ | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
$\card{W}$ | $1$ |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $72$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | not computed |
Projective image | not computed |