Properties

Label 2304.y.192.bm1
Order $ 2^{2} \cdot 3 $
Index $ 2^{6} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 9 & 1 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 11 & 0 \\ 0 & 11 \end{array}\right), \left(\begin{array}{rr} 1 & 4 \\ 8 & 13 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Ambient group ($G$) information

Description: $C_8:D_6\times S_4$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_6\times A_4).C_2^6.C_2^3$
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$\card{W}$\(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2^3\times C_4$
Normalizer:$C_{12}:C_2^4$
Normal closure:$C_2\times C_6:S_4$
Core:$C_6$
Minimal over-subgroups:$C_6:S_3$$C_2\times D_6$$C_2\times D_6$$C_2\times D_6$$C_2\times D_6$$C_2\times D_6$
Maximal under-subgroups:$C_6$$S_3$$C_2^2$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed