Properties

Label 2304.wi.72.bf1
Order $ 2^{5} $
Index $ 2^{3} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:C_2^2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(8,11)(10,15), (8,9)(10,13)(11,14)(12,15), (5,6)(8,13,11,12)(9,10,14,15), (4,7)(5,6)(8,10)(9,12)(11,15)(13,14), (4,7)(5,6)(8,15)(9,13)(10,11)(12,14)\rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_3\times C_2^5:S_4$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_6.C_2^5$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \)
$\operatorname{Aut}(H)$ $S_4\wr C_2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2^2\wr C_2$, of order \(32\)\(\medspace = 2^{5} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2^4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_{12}.C_2^4$
Normal closure:$C_2^5:S_4$
Core:$C_1$
Minimal over-subgroups:$C_6.C_2^4$$D_4:C_2^3$
Maximal under-subgroups:$D_4:C_2$$C_2\times D_4$$C_2\times D_4$$C_2\times D_4$$C_2\times D_4$$D_4:C_2$$C_2\times D_4$$C_2\times D_4$$D_4:C_2$

Other information

Number of subgroups in this autjugacy class$24$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_3\times C_2^5:S_4$