Properties

Label 2304.wi.36.g1
Order $ 2^{6} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4:C_2^3$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(4,7)(5,6), (4,7)(5,6)(8,11)(10,15), (5,6)(8,13,11,12)(9,10,14,15), (8,10) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.

Ambient group ($G$) information

Description: $C_3\times C_2^5:S_4$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^6.C_6.C_2^5$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^5.S_4\wr C_2$, of order \(36864\)\(\medspace = 2^{12} \cdot 3^{2} \)
$\operatorname{res}(S)$$C_2^6:C_2^3$, of order \(512\)\(\medspace = 2^{9} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2^3:D_4$, of order \(64\)\(\medspace = 2^{6} \)

Related subgroups

Centralizer:$C_2\times C_6$
Normalizer:$C_3\times C_2^5:D_4$
Normal closure:$C_2^5:S_4$
Core:$C_2^3$
Minimal over-subgroups:$C_{12}.C_2^4$$C_2^4:D_4$$D_4^2:C_2$
Maximal under-subgroups:$D_4:C_2^2$$C_2^2\times D_4$$D_4:C_2^2$$C_2^2\times D_4$$C_2^2\times D_4$$C_2^2\times D_4$$D_4:C_2^2$$D_4:C_2^2$$D_4:C_2^2$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3\times C_2^5:S_4$