Properties

Label 2304.iq.3.b1
Order $ 2^{8} \cdot 3 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3:\GL(2,\mathbb{Z}/4)$
Order: \(768\)\(\medspace = 2^{8} \cdot 3 \)
Index: \(3\)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(11,12)(13,14), (9,10)(13,14), (1,7)(2,6)(3,4)(5,8), (2,8)(5,6), (1,2,4,5) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $(C_2^3\times A_4):S_4$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^3.C_2^4$, of order \(27648\)\(\medspace = 2^{10} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $A_4^2.C_2^5.C_2^2$
$\card{W}$\(192\)\(\medspace = 2^{6} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_2^3:\GL(2,\mathbb{Z}/4)$
Normal closure:$(C_2^3\times A_4):S_4$
Core:$C_2^5:A_4$
Minimal over-subgroups:$(C_2^3\times A_4):S_4$
Maximal under-subgroups:$C_2^5:A_4$$C_2^2\wr S_3$$C_2^4.S_4$$C_2\wr S_3$$C_2\wr S_3$$C_2^5:D_4$$C_2\times \GL(2,\mathbb{Z}/4)$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed