Subgroup ($H$) information
| Description: | $C_2^3:\GL(2,\mathbb{Z}/4)$ |
| Order: | \(768\)\(\medspace = 2^{8} \cdot 3 \) |
| Index: | \(3\) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(11,12)(13,14), (9,10)(13,14), (1,7)(2,6)(3,4)(5,8), (2,8)(5,6), (1,2,4,5) \!\cdots\! \rangle$
|
| Derived length: | $3$ |
The subgroup is maximal, nonabelian, and monomial (hence solvable).
Ambient group ($G$) information
| Description: | $(C_2^3\times A_4):S_4$ |
| Order: | \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $A_4^3.C_2^4$, of order \(27648\)\(\medspace = 2^{10} \cdot 3^{3} \) |
| $\operatorname{Aut}(H)$ | $A_4^2.C_2^5.C_2^2$ |
| $\card{W}$ | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $3$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | not computed |