Properties

Label 2304.cl.2.b1.a1
Order $ 2^{7} \cdot 3^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6\times C_{192}$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Index: \(2\)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Generators: $a^{6}, b^{96}, b^{6}, b^{12}, b^{3}, b^{64}, b^{48}, b^{24}, a^{4}b^{96}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, abelian (hence metabelian and an A-group), and metacyclic.

Ambient group ($G$) information

Description: $C_{192}.C_{12}$
Order: \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^3\times C_{32}.C_8.C_2^3)$
$\operatorname{Aut}(H)$ $Q_8.(C_8\times S_3).C_2^4$
$\operatorname{res}(\operatorname{Aut}(G))$$C_2^4\times C_{16}$, of order \(256\)\(\medspace = 2^{8} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(192\)\(\medspace = 2^{6} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_6\times C_{192}$
Normalizer:$C_{192}.C_{12}$
Minimal over-subgroups:$C_{192}.C_{12}$
Maximal under-subgroups:$C_6\times C_{96}$$C_3\times C_{192}$$C_3\times C_{192}$$C_2\times C_{192}$$C_2\times C_{192}$$C_2\times C_{192}$

Other information

Möbius function$-1$
Projective image$D_{96}$