Properties

Label 2293235712.lm.559872._.A
Order $ 2^{12} $
Index $ 2^{8} \cdot 3^{7} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^{12}$
Order: \(4096\)\(\medspace = 2^{12} \)
Index: \(559872\)\(\medspace = 2^{8} \cdot 3^{7} \)
Exponent: \(2\)
Generators: $\langle(1,6)(4,23)(5,17)(7,21)(10,15)(11,19)(14,16)(20,22), (3,13)(8,24), (1,20) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational. Whether it is a direct factor, a semidirect factor, or almost simple has not been computed.

Ambient group ($G$) information

Description: $C_2^{12}.(C_3^6.C_2^5:S_4)$
Order: \(2293235712\)\(\medspace = 2^{20} \cdot 3^{7} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$5$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3^6.C_2^5:S_4$
Order: \(559872\)\(\medspace = 2^{8} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Automorphism Group: $C_3^6.C_2^7:S_4$, of order \(2239488\)\(\medspace = 2^{10} \cdot 3^{7} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $4$

The quotient is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{12}.(C_3^6.C_2^7:S_4)$, of order \(9172942848\)\(\medspace = 2^{22} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ Group of order \(644\!\cdots\!000\)\(\medspace = 2^{66} \cdot 3^{8} \cdot 5^{3} \cdot 7^{4} \cdot 11 \cdot 13 \cdot 17 \cdot 23 \cdot 31^{2} \cdot 73 \cdot 89 \cdot 127 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Möbius function not computed
Projective image not computed