Properties

Label 226920.b.62.a1.a1
Order $ 2^{2} \cdot 3 \cdot 5 \cdot 61 $
Index $ 2 \cdot 31 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$F_{61}$
Order: \(3660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 61 \)
Index: \(62\)\(\medspace = 2 \cdot 31 \)
Exponent: \(3660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 61 \)
Generators: $\left[ \left(\begin{array}{rr} 33 & 48 \\ 39 & 58 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 6 & 48 \\ 50 & 40 \end{array}\right) \right], \left[ \left(\begin{array}{rr} 30 & 40 \\ 0 & 15 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Ambient group ($G$) information

Description: $\PGL(2,61)$
Order: \(226920\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 31 \cdot 61 \)
Exponent: \(113460\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 31 \cdot 61 \)
Derived length:$1$

The ambient group is nonabelian, almost simple, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGL(2,61)$, of order \(226920\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 31 \cdot 61 \)
$\operatorname{Aut}(H)$ $F_{61}$, of order \(3660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 61 \)
$W$$F_{61}$, of order \(3660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 61 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$F_{61}$
Normal closure:$\PGL(2,61)$
Core:$C_1$
Minimal over-subgroups:$\PGL(2,61)$
Maximal under-subgroups:$C_{61}:C_{30}$$C_{61}:C_{20}$$C_{61}:C_{12}$$C_{60}$

Other information

Number of subgroups in this conjugacy class$62$
Möbius function$-1$
Projective image$\PGL(2,61)$