Properties

Label 22674816.jl.729.A
Order $ 2^{7} \cdot 3^{5} $
Index $ 3^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_2^2\times C_6^2).S_3^3$
Order: \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)
Index: \(729\)\(\medspace = 3^{6} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,3,2)(4,16,30)(5,17,28)(6,18,29)(7,20,31)(8,21,32)(9,19,33)(22,24,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^8.C_2^4:S_3^3$
Order: \(22674816\)\(\medspace = 2^{7} \cdot 3^{11} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^8.(D_6\times S_4\wr C_2)$, of order \(90699264\)\(\medspace = 2^{9} \cdot 3^{11} \)
$\operatorname{Aut}(H)$ $C_3^2:S_4^2:D_6$, of order \(62208\)\(\medspace = 2^{8} \cdot 3^{5} \)
$W$$(C_2^2\times C_6^2).S_3^3$, of order \(31104\)\(\medspace = 2^{7} \cdot 3^{5} \)

Related subgroups

Centralizer: not computed
Normalizer:$(C_2^2\times C_6^2).S_3^3$
Normal closure:$C_3^8.C_2^4:S_3^3$
Core:$C_3^2:S_3$

Other information

Number of subgroups in this autjugacy class$729$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^8.C_2^4:S_3^3$