Properties

Label 226464.i.4.b1.a1
Order $ 2^{3} \cdot 3 \cdot 7 \cdot 337 $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{1011}:C_{56}$
Order: \(56616\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 337 \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(56616\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 337 \)
Generators: $b^{2022}, b^{1348}, a^{42}b^{1455}, a^{28}b^{2800}, a^{8}b^{674}, b^{12}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Ambient group ($G$) information

Description: $D_{337}:C_{336}$
Order: \(226464\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \cdot 337 \)
Exponent: \(113232\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \cdot 337 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{674}.C_{168}.C_2^4$
$\operatorname{Aut}(H)$ $C_{337}.C_{168}.C_2^3$
$W$$C_{337}:C_{56}$, of order \(18872\)\(\medspace = 2^{3} \cdot 7 \cdot 337 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$D_{337}:C_{336}$
Minimal over-subgroups:$D_{337}:C_{168}$
Maximal under-subgroups:$C_{1011}:C_{28}$$C_{337}:C_{56}$$C_{1011}:C_8$$C_{168}$

Other information

Möbius function$0$
Projective image$C_{674}:C_{56}$