Properties

Label 226464.i.12.b1.a1
Order $ 2^{3} \cdot 7 \cdot 337 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{337}:C_{56}$
Order: \(18872\)\(\medspace = 2^{3} \cdot 7 \cdot 337 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(18872\)\(\medspace = 2^{3} \cdot 7 \cdot 337 \)
Generators: $b^{12}, a^{8}b^{674}, a^{42}b^{1455}, b^{2022}, a^{28}b^{2800}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Ambient group ($G$) information

Description: $D_{337}:C_{336}$
Order: \(226464\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \cdot 337 \)
Exponent: \(113232\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \cdot 337 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{674}.C_{168}.C_2^4$
$\operatorname{Aut}(H)$ $C_2\times F_{337}$, of order \(226464\)\(\medspace = 2^{5} \cdot 3 \cdot 7 \cdot 337 \)
$W$$C_{337}:C_{56}$, of order \(18872\)\(\medspace = 2^{3} \cdot 7 \cdot 337 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$D_{337}:C_{336}$
Minimal over-subgroups:$C_{1011}:C_{56}$$D_{337}:C_{56}$
Maximal under-subgroups:$C_{337}:C_{28}$$C_{337}:C_8$$C_{56}$

Other information

Möbius function$0$
Projective image$C_{2022}:C_{56}$