Properties

Label 224.74.7.a1.a1
Order $ 2^{5} $
Index $ 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:C_2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(7\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, b, c^{7}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_2^3.D_{14}$
Order: \(224\)\(\medspace = 2^{5} \cdot 7 \)
Exponent: \(28\)\(\medspace = 2^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$F_7\times C_2^6$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2^2\wr C_3$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \)
$\operatorname{res}(S)$$C_2^6$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$C_4^2:C_2$
Normal closure:$C_2^3.D_{14}$
Core:$C_2^2:C_4$
Minimal over-subgroups:$C_2^3.D_{14}$
Maximal under-subgroups:$C_2^2:C_4$$C_2^2:C_4$$C_2^2:C_4$$C_4^2$$C_4:C_4$$C_4:C_4$$C_4:C_4$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$-1$
Projective image$C_2\times D_{14}$