Properties

Label 222336.a.386.b1.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 2 \cdot 193 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_{192}$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: \(386\)\(\medspace = 2 \cdot 193 \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Generators: $a^{3}, a^{12}, a^{24}, a^{64}, a^{6}, a^{96}, a^{48}, b^{386}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_6\times F_{193}$
Order: \(222336\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{579}.C_{96}.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_{16}\times \GL(2,3)$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_6\times C_{192}$
Normalizer:$C_6\times C_{192}$
Normal closure:$C_3\times F_{193}$
Core:$C_3$
Minimal over-subgroups:$C_3\times F_{193}$$C_6\times C_{192}$
Maximal under-subgroups:$C_3\times C_{96}$$C_{192}$$C_{192}$$C_{192}$$C_{192}$
Autjugate subgroups:222336.a.386.b1.b1

Other information

Number of subgroups in this conjugacy class$193$
Möbius function$1$
Projective image$C_2\times F_{193}$