Properties

Label 222336.a.12352.a1.a1
Order $ 2 \cdot 3^{2} $
Index $ 2^{6} \cdot 193 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_6$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Index: \(12352\)\(\medspace = 2^{6} \cdot 193 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $b^{579}, a^{64}, b^{386}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_6\times F_{193}$
Order: \(222336\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{579}.C_{96}.C_2^3$
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_6\times C_{192}$
Normalizer:$C_6\times C_{192}$
Normal closure:$C_{1158}:C_3$
Core:$C_6$
Minimal over-subgroups:$C_{1158}:C_3$$C_6^2$
Maximal under-subgroups:$C_3^2$$C_6$$C_6$$C_6$$C_6$

Other information

Number of subgroups in this conjugacy class$193$
Möbius function$0$
Projective image$F_{193}$