Properties

Label 222264.g.36.n1.a1
Order $ 2 \cdot 3^{2} \cdot 7^{3} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^3:(C_3\times S_3)$
Order: \(6174\)\(\medspace = 2 \cdot 3^{2} \cdot 7^{3} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $a^{3}d^{21}, f, d^{14}, d^{6}e^{3}f^{2}, c^{2}d^{24}e^{2}, ef^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_7^3:(C_3^3:S_4)$
Order: \(222264\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 7^{3} \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.C_6^2.(C_6\times S_3)$, of order \(444528\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7^{3} \)
$\operatorname{Aut}(H)$ $C_7^3:(S_3\times C_6^2)$, of order \(74088\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7^{3} \)
$W$$C_7^3:(S_3\times C_3^2)$, of order \(18522\)\(\medspace = 2 \cdot 3^{3} \cdot 7^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times C_7^3:(C_3^2\times S_3)$
Normal closure:$C_7^3:C_3^2:S_4$
Core:$C_7^3:C_3^2$
Minimal over-subgroups:$C_7^3:(S_3\times C_3^2)$$C_7^3:C_3^2:S_3$$C_7^3:(C_6\times S_3)$
Maximal under-subgroups:$C_7^3:C_3^2$$C_7^3:C_6$$C_7\wr S_3$$C_7^2:(C_3\times S_3)$$C_{21}:C_6$

Other information

Number of subgroups in this conjugacy class$6$
Möbius function$-2$
Projective image$C_7^3:(C_3^3:S_4)$