Properties

Label 222264.g.12.c1.a1
Order $ 2 \cdot 3^{3} \cdot 7^{3} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^3:C_3^2:S_3$
Order: \(18522\)\(\medspace = 2 \cdot 3^{3} \cdot 7^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $a^{3}c^{3}d^{21}, ef, d^{14}, c^{2}d^{24}e^{2}, bc^{5}d^{3}e^{4}f^{4}, f, d^{6}e^{6}f^{5}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_7^3:(C_3^3:S_4)$
Order: \(222264\)\(\medspace = 2^{3} \cdot 3^{4} \cdot 7^{3} \)
Exponent: \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^3.C_6^2.(C_6\times S_3)$, of order \(444528\)\(\medspace = 2^{4} \cdot 3^{4} \cdot 7^{3} \)
$\operatorname{Aut}(H)$ $C_7^3.\He_3.Q_8.C_6$
$W$$C_7^3:C_3\wr S_3$, of order \(55566\)\(\medspace = 2 \cdot 3^{4} \cdot 7^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_7^3:C_3\wr S_3$
Normal closure:$C_7^3:C_3^2:S_4$
Core:$C_7^3:C_3^2$
Minimal over-subgroups:$C_7^3:C_3^2:S_4$$C_7^3:C_3\wr S_3$
Maximal under-subgroups:$C_7^3:\He_3$$C_7^3:(C_3\times S_3)$$C_7^3:(C_3\times S_3)$$C_3^2:S_3$

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$1$
Projective image$C_7^3:(C_3^3:S_4)$