Properties

Label 221184.dx.256.A
Order $ 2^{5} \cdot 3^{3} $
Index $ 2^{8} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:\GL(2,\mathbb{Z}/4)$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(256\)\(\medspace = 2^{8} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(17,20)(18,19), (17,18)(19,20), (1,2,4,7,11,14)(3,6)(5,9,12,15,16,8)(10,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_2^4:A_4^2.\GL(2,\mathbb{Z}/4)$
Order: \(221184\)\(\medspace = 2^{13} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^{10}.C_3^4.C_2^5$
$\operatorname{Aut}(H)$ $S_4\times D_6^2$, of order \(3456\)\(\medspace = 2^{7} \cdot 3^{3} \)
$W$$A_4:S_3^2$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3^2:\GL(2,\mathbb{Z}/4)$
Normal closure:$C_2^4:A_4^2.\GL(2,\mathbb{Z}/4)$
Core:$C_2^3$

Other information

Number of subgroups in this autjugacy class$256$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_2^8.A_4:S_3^2$