Properties

Label 216000.d.864.A
Order $ 2 \cdot 5^{3} $
Index $ 2^{5} \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^3:C_2$
Order: \(250\)\(\medspace = 2 \cdot 5^{3} \)
Index: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $c^{6}d^{18}e^{8}f^{4}, e^{2}f^{3}, f, d^{6}f$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_5^3:\He_3.C_2^3$
Order: \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times C_6^2:D_6$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2\times C_6^2:D_6$, of order \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $\AGL(3,5)$, of order \(186000000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{6} \cdot 31 \)
$W$$D_5^3.D_6$, of order \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3:S_3$
Normalizer:$D_5^3:\He_3.C_2^3$
Minimal over-subgroups:$C_5^3:C_6$$C_5^3:C_4$
Maximal under-subgroups:$C_5^3$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_5^3:\He_3.C_2^3$