Properties

Label 216000.d.288.A
Order $ 2 \cdot 3 \cdot 5^{3} $
Index $ 2^{5} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^3:C_6$
Order: \(750\)\(\medspace = 2 \cdot 3 \cdot 5^{3} \)
Index: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $c^{6}d^{18}e^{8}f^{4}, d^{6}f, e^{2}f^{3}, d^{20}, f$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_5^3:\He_3.C_2^3$
Order: \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $D_6\times S_4$
Order: \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2:D_6^2$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_2\times C_5^2:D_5.C_2.\PSL(3,5)$
$W$$D_5^3:(C_4\times S_3)$, of order \(24000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$D_5^3:\He_3.C_2^3$
Minimal over-subgroups:$C_3^2\times C_5^2:D_5$$C_3\times C_5^3:C_6$$C_3\times C_5^3:C_6$$C_5^3:C_{12}$
Maximal under-subgroups:$C_5^2\times C_{15}$$C_5^3:C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_5^3:\He_3.C_2^3$