Properties

Label 216000.d.8.n1
Order $ 2^{3} \cdot 3^{3} \cdot 5^{3} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{15}^2:(S_3\times F_5)$
Order: \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $e^{2}f^{4}, d^{6}e^{6}f^{2}, b^{3}c^{9}d^{15}e^{2}f^{4}, f, b^{2}d^{28}e^{4}f^{3}, d^{20}, ac^{9}d^{19}e^{3}f, c^{6}e^{4}f^{2}, c^{4}d^{10}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_5^3:\He_3.C_2^3$
Order: \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $(C_5^2\times C_{15}).C_6^2.C_2^4$
$W$$C_{15}^2:(D_6\times F_5)$, of order \(54000\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{15}^2:(D_6\times F_5)$
Normal closure:$D_5^3.C_3^2:D_6$
Core:$C_5^3:(C_3^2:C_4)$
Minimal over-subgroups:$D_5^3.C_3^2:D_6$$C_{15}^2:(D_6\times F_5)$
Maximal under-subgroups:$(C_5\times C_{15}^2):D_6$$(C_5\times C_{15}^2):C_{12}$$C_{15}^2:C_{15}:C_4$$C_5^3.(C_6\times S_3).C_2$$C_5^3:C_6.D_6$$C_{15}^2:(C_4\times S_3)$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_5^3:\He_3.C_2^3$