Properties

Label 216000.d.16.g1
Order $ 2^{2} \cdot 3^{3} \cdot 5^{3} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_5\times C_{15}^2):D_6$
Order: \(13500\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{3} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $ac^{9}d^{19}e^{3}f, f, d^{6}e^{2}f^{4}, b^{2}d^{28}e^{4}f^{3}, d^{20}, e^{2}f^{4}, c^{6}d^{18}e^{8}f^{4}, c^{4}d^{10}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_5^3:\He_3.C_2^3$
Order: \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $(C_5^2\times C_{15}).D_6^2.C_2^2$
$W$$C_5^3:(C_4\times S_3^2)$, of order \(18000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{15}^2:(D_6\times F_5)$
Normal closure:$C_3^2:D_5\wr S_3$
Core:$C_3^2\times C_5^2:D_5$
Minimal over-subgroups:$C_3^2:D_5\wr S_3$$C_{15}^2:(S_3\times D_{10})$$C_{15}^2:(S_3\times F_5)$$C_{15}^2:(S_3\times F_5)$
Maximal under-subgroups:$C_5\times C_{15}^2:S_3$$(C_5\times C_{15}^2):C_6$$C_{15}^2:D_{15}$$C_3\times C_5^3:D_6$$C_3\times C_5^3:D_6$$C_3\times C_5^3:D_6$$C_{15}^2:D_6$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_5^3:\He_3.C_2^3$