Properties

Label 216000.d.6.w1
Order $ 2^{5} \cdot 3^{2} \cdot 5^{3} $
Index $ 2 \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^3:(C_{12}\times S_4)$
Order: \(36000\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $e^{2}, d^{6}f^{2}, c^{3}, c^{6}d^{24}e^{5}f^{4}, c^{6}d^{18}e^{8}f^{4}, d^{15}e^{9}f^{3}, ac^{6}d^{28}e^{8}f^{4}, d^{20}, b^{2}c^{8}de^{7}f^{2}, f$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_5^3:\He_3.C_2^3$
Order: \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $D_5^3:(C_4\times S_3)$, of order \(24000\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{3} \)
$W$$D_5^3.D_6$, of order \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_5^3:(C_{12}\times S_4)$
Normal closure:$D_5^3.C_3^2:D_6$
Core:$C_3\times C_5^3:(C_2^2\times C_4)$
Minimal over-subgroups:$D_5^3.C_3^2:D_6$
Maximal under-subgroups:$C_3\times D_5\wr S_3$$C_3\times D_5^3.C_6$$C_3\times D_5^3.S_3$$C_3\times C_5^3.(C_4\times D_4)$$D_5^3.D_6$$C_5^3:(S_3\times C_{12})$

Other information

Number of subgroups in this autjugacy class$6$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_5^3:\He_3.C_2^3$