Properties

Label 216000.d.3.a1
Order $ 2^{6} \cdot 3^{2} \cdot 5^{3} $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times D_5^3.D_6$
Order: \(72000\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{3} \)
Index: \(3\)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $d^{6}f^{2}, f, d^{15}e^{9}f^{3}, b^{3}, d^{20}, c^{6}d^{18}e^{8}f^{4}, c^{6}d^{24}e^{5}f^{4}, ac^{2}d^{18}e^{8}f^{4}, c^{3}, b^{2}d^{21}e^{7}f^{2}, e^{2}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_5^3:\He_3.C_2^3$
Order: \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $S_3\times D_5^3.D_6$, of order \(72000\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{3} \)
$W$$S_3\times D_5^3.D_6$, of order \(72000\)\(\medspace = 2^{6} \cdot 3^{2} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$S_3\times D_5^3.D_6$
Normal closure:$D_5^3:\He_3.C_2^3$
Core:$D_5\wr C_3.D_6$
Minimal over-subgroups:$D_5^3:\He_3.C_2^3$
Maximal under-subgroups:$D_5\wr C_3.D_6$$D_5^3:S_3^2$$D_5^3.C_6\times S_3$$D_5^3.S_3^2$$D_5^3.S_3^2$$C_5^3:(C_{12}\times S_4)$$D_5^3.S_3^2$$D_5^3:(C_4\times S_3)$$C_5^3.(C_4\times D_4)\times S_3$$C_5^3:(C_4\times S_3^2)$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$D_5^3:\He_3.C_2^3$